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A quantum mechanical nonadiabatic theory of dissociative adsorption of diatomic molecutes rietal

surface is presented. The following reaction coordinates are used to construct crossing diabatic potential
energy surfaces (PES): the distagdeetween the atoms of the, Xholecule, the distanceof the X, molecular

axis from the surface, the set of coordinates describing possible displacements of metal atoms under adsorption.
Expression for the rate constant is derived using the model potentials describing vibrations along these
coordinates. The calculated dependency of the rate constantthe reaction heatE is compared with that

in classical approximation. It is shown that quantum effects lead to a weaker dependéilcenokE as
compared to that for classical one.

1. Introduction possible quantum effects were incorporated. This is the subject
of the present paper where the process of dissociative adsorption

A number of models for calculations of the rate constants ¢ 5 homonuclear molecule with one quantum degree of freedom
for adiabatic and nonadiabatic processes of dissociative adsorpyg ¢onsjdered in terms of nonadiabatic theory. A model and first
tion of diatomic molecules at metals have been suggested over..q its are presented.

the past decade. A method of effective Hamiltonian for — Generally speaking, there appears to be little justification for

calculation of the activation energy was worked out in ref 1. aying the nonadiabatic approach to consider the dissociative
These authors constructed the adiabatic potential energy S”rfaceﬁdsorption since this process is usually not electronically

(PES) for the dissociative adsorption at metal electrodes using
Schmickler's theor§of electrochemical reactions and consider-

ing the motion along three reactive modes. An approach for
nonadiabatic dissociative adsorption of homonuclear diatomic
molecules taking into account the structural reorganization of

nonadiabatic. Nonadiabatic effects for this reaction are usually
limited to electron-hole pair excitation or spin-conservation

effects which are not part of this model. Nevertheless, the
nonadiabatic approach is useful to compare quantum and
classical results. As was shown in ref 3, results for an adiabatic

the s_urface and the solv_ent effect was deyelo’ffed’.he case may be obtained from a nonadiabatic one by means of
coordinates that characterize the molecular vibrations of the correction of the activation energy using known approximate

substratg, as well as coordingtes de:_scribing the state .of _theexpressioﬁp The correctness of this approximation was par-
§olvent in the case of cqtalytlc reactlons at the sphd/hqtpd ticularly confirmed in ref 5 where it was shown that the
interface, were introduced into the theoretical model in addition .4 qinates of transition states calculated in the nonadiabatic
to coordinat_es of adsorbate molecules. The motion along all 5 ge| may be very close to those calculated in the adiabatic
these coordinates was supposed to be classical. A model for,qe| At jast we note, that for number of dissociative reactions
the calculation of the transition state on the adiabatic potential (¢ example, for oxygen dissociative adsorption) the transition
energy surface for the process of the dissociative adsorptiongiae js close to the initial one. Because of this fact, the resonance
was presented in refs 5 and 6. splitting in the transition state that depends on reaction
The classical description of the motion along all reactive coordinates may be rather small.
modes, however, seems not to be always valid for the processes
under discussion. Specifically, the<@ vibration frequency 2. Theoretical Model
of molecular oxygen adsorbed on different metals may reach
~1000 cnt?! for the “ontop” and “onbond” adsorption posi-
tions$ If the dissociative adsorption of nitrogen or hydrogen is

considered, the frequency is apparently much higher than thatf_ ¢ sten is th tivated f i f the stabl lecularl
for oxygen. One may expect that the motion along this mode Irst stép Is the nonactivated formation of the stable molecularly

will have a quantum character. We note that a tunneling @dsorbed complex (precursor) betweenaxid a metal surface
mechanism has gained popularity several years ago to describe
the mechanism of oxygen dissociative adsorption on silver
surfaces™® Therefore, a modified model is needed where

According to a generally accepted point of viéd,one of
the mechanisms of dissociative adsorption of anmolecule
on transition metals is described by a two-step process. The

X, + metal< X, */metal 0]

where a “star” denotes that the-X bond is somewhat stretched
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Figure 1. Pictorial view of a diatomic molecule dissociative adsorption o ll‘, "

on a “hole” position of a metal surface.

(final) state when the XX bond is disrupted, and the X atoms
approach the metal surface at a shorter distance

N I I

-
(X+X)fa;5)

X *Imetal— (X. . .X)/metal {l))

calculate the rate constant of formation of the dissociated state!!luStrates molecular and dissociative adsorbed states gfradtecule;

. S Xoi andxor are the initial and the final equilibrium distances of fXom
(X. . .X)/metal from the precursor }/metal. This reaction is the surface;AE is the reaction energyAE; and AE; are the corre-

obviously the rate-determining step of the above mechanism. sponding adsorption heats; and Dy are the dissociative parameters
(a) Potential SurfacesWe assume the Xmolecule to be in of the initial and final Morse curves.

a position parallel to the metal (Figure%9The initial, U;, and

final, Us, potential energy surfaces (PES) are introduced to with the metal electronic levels, van der Waals attraction, Pauli
describe step II. Each of these potential surfaces represents théepulsion, etc. According to our quantum chemical calculations
total energy of the whole system that depends on a set offor various clustefsit has a Morse form

coordinateqry} describing the vibrations of the metal nuclei,

on the distancex between the center of mass of ¥nd the v(X) =Dy[1 — efﬂ'(xf""')]2 (5)
metal surface, and on the coordingtdescribing the intramo-

lecular vibrations of the Xmolecule. The symbol Xis used The interaction potential of the dissociated system X...X with
here as a general notation of the reactant in the undissociatedhe surfaceys(x), characterizes the interaction of two X atoms
and dissociated state. with the surface. The motion of two atoms along #axis in

The simplest form olU; and Us is that obtained under the  the dissociated state in general should be described by two
assumption that the vibration modes along the coordinatgs degrees of freedom. However, in the classical limit and in view
and{rg are not coupled. In this case, both potential surfaces of the symmetry of this system it is sufficient to consider only
may be written as a sum of three separate components. Oneisynchronous” shift of both atoms to or from the metal surface.
v(X), characterizes the interaction betweeraXd a metal surface One coordinate is sufficient then for the description of their
in the direction perpendicular to the surface. The secafyd, potential energy. The latter will be approximate also by the
is the vibration for %. The third termw({ry}), is due to the Morse functiof
vibrations of the metal atoms. Thus, providing these components

with the subscripts “i” and “f", we have vi(X) = D1 — g P02 (6)
Uit y: {nd) = wil{rd) + u®) + vi(x) @) These curves are shown in Figure 2. In eqs 5 ang &nd s
are the anharmonicity constants equdl to
U060 Y, {rd) = widrd) + u@) + o) + A3 (2) / q
HereAJ is the difference of the energy values at the minima of ﬁi,f = M(wi)ff)2/2Di,f
the potential energy surfaces of the final and initial states. The
minimum energy of the initial state is taken to be zero. where M is the corresponding reduced massy; is the
We describe now the assumed forms of the functiaixs, frequency, and;; is the depth of the potential well (see Figure

u(y) andw({ry}). The potential energies({ri}) andw({ry}) 2).

are usually written in harmonic approximation since metal atoms ~ The functionui(y) is the potential energy of nondissociated
perform small vibrations in the crystal lattice; these potential adsorbed moleculeXTherefore, the Morse-form approximation
energies are represented as the sum of the harmonic potentialseems to be appropriate

of a set of independent oscillators

u(y) = B[1 — e “U)2 (7)
wi({rgd) = l/2mek2rk2 (3)

where the anharmonicity constént

wi{nd) =2y mo(r— Ao @ e

whereAr = I'of — I'voi, wk IS the vibration frequency, anah depends on the corresponding reduced masthe vibration
is the reduced mass. frequencyw?, and the dissociation enerdy (see Figure 3).

The interaction potential of the adsorbate molecule with the  The interaction between the dissociated fragments X (in the
surface,ui(x), includes effects of the interaction of its HOMO final state) is assumed to have a repulsive character up to long
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oh 2

v+ 1/2) (13)

Energy

Note that energy levels! start from the energyu(y) at
infinity, i.e., from the energy value equal & (see Figure 3).
Therefore, the energy distance of the lewklfrom y-axis in

B w(r) Figure 3 is equal t®; — €. The energy levels; start from the

£ value of theu(y) at infinity. Since according to eq &(w) =

& w(p) Aj, we can see from Figure 3 that under the conditions of the
Franck-Condon principle for the quantum subsystém

287
S

=B —¢ — A (14)

whereAj < 0 if the value ofui() is negative, and\j > O if
Ug() > 0.

_ _ _ : ) First, we calculate the average probability of the transition
Figure 3. Morse/exponential potentials along theoordinate describ-  (per unit time) from the initial state to the final state at the fixed

ing the molecular adsorbed and dissociated st&es;the dissociation - - L .
parameter of the potential curug Aj is the energy of transition along dlstanceX.l In Condon apprOXIm.atlon it may be presented in
the following form (see Appendix A):

the coordinatey.

distances and is described by the exponential function 2

P() =

X

— —20¢(y—Yoi) ; IthT
uf(y) - Bfe + AJ (8) . . c exp[—a(v, Gf)]
whereAj characterizes the position of the cunserelative to VZD exp(e” — & )/kBT]ﬁ’ deiples) Z, %
they axis as shown in Figure 3. oo

(b) Transition Probability. According to the aforesaid, we f,im do exp[={ Al + 6(1 = )& + 0[vi(X) = vi(]}kgT]
need to calculate the rate constant of step Il, i.e., the average (15)
transition probability per unit time from the potential surface
Ui to the potential surface:. The most appropriate method for ~ where the notation
nonadiabatic reactions (which is rigorous at small interaction
\Y; b_etween the reactants) is .the Fermi Gojglen RQJI&.” Let @fef(y)mv(y)mZ = cg o) (16)
us introduce the wave functions of the initial and final states

using the BorrrOppenheimer approximafiéh of the square of the overlap integral of the wave functions for

N _ Y e the quantum degree of freedom was introduced,/aind given
it =Ry {rd)y (Y)I_l¢i (ry) ©) by eq A10. The constant in eqs 15 and 16 is due to the
k normalization of the wave functiongi¢(y) (for details see
e — . s me Appendix B). Equation 15 determines the probability of the
A PRy, {rid)i'(y) |:| A (10) transition at fixed value of the coordinateThe total transition
probability W is obtained by the weighted integration Bfx)

Hereg; s are the electronic wave functions aRdks the electronic overx

coordinate,yis are the nuclear wave functions describing a 1
relative motion of X atoms along the quantum degree of freedom W= = fo “e [ti(/keT] P(x) dx
y. The functiony; is characterized by the quantum vibration Z

numbery, and the functiory;’ corresponds to the energy level V2

¢ in a continuous manifold of energies of the final decaying = f°° dx zeXp[_(fio —&")kgT] f‘” de;p(e;) x
potential u(y). The ¢r(r) and ¢rX(ry) terms are the wave O Ak T 4 0

functions of the phonon subsystem in the initial vibration state cexp[—o(v, €)]

ng and the final vibration staten, respectively. The total - «

energies of the whole system including the energjg$x) of Z,

the classical subsystem are equal to ico
ical stbsy au [ d0 expl-{0Al + 6(1 — O)E}kgT] x

EM = Zhwk(nk +1/2)+B —€+uv(x)  (11) Zix ﬁ i expl—{ v(X) + (L — 0,09} k.T] (17)

ENr = Zhwk(mk +12)+ e+ v(x)+ A (12) _ _ S
whereZ, is the configurational integral.
The integrals ovek andf can be calculated approximately
The energy levels! in the Morse potential well (eq 7) are  using the saddle point methd®*3The calculation leads to the
given by equatiot? following equation for the transition probability:



Dissociative Adsorption Metal Surfaces
V2

= FE’ V

27k T(Vi') i

H"(0, %)If"(0, %)

— IO, Iv/kT 00
e el [ de; per) x

cexp[—o(v,&)]

Z,

expl-H(® J/koT]
(18)

wherex andé are the coordinates of the saddle point determined
by the equations

dv, (X) du(x)

dx =0

1-0— (19)

Al + (%) — 0(%) + (1 — 20)E, =0 (20)

In eq 18,f"(X) =
the function

(9%10x?)5 is the partial second derivative of

) =

with respect tox, H'(%, 0) =
derivative of the function

Ovi(¥) + (1 — O)v(x) (21)

(d?H/d6?); is the total second

H(0, X) = 6(Al — Aj) + f(x) + 6(1 — O)E, (22)
with respect tod, and v{'(x),q; is the second derivative of the
function vi(x) with respect tox. The productf (%, 6)-|H" (6,

X)| may be represented in the following form suitable for the

numerical calculatiol?
I'(% 0) =f"(% O)H" (0, )] =[Al — Aj + E, + v;(x) —
v ®) = v'(R] + 205(RE, + [4(®) — v(R)]* (23)

(for determination of the derivatives see Appendix C). A more
compact form forH(x, 6) emerges with the use of eq 20:
H(x, 0) = v;(X) + 0°E, (24)

Equations 1820 may be used for numerical calculations;
however, since the calculation of the matrix element (eq 16) is
rather difficult, we transform eq 18 into a more convenient form
for the application of a quasi-classical approximatidhe
physical meaning of eq 18 is the following. The transition
between two energy levelg; and ¢ corresponds to the
transition along the classical coordinatesind {r,} with the
effective energy of transition equal fd = AJ — Aj whereA|j
= B — ¢ — ¢ (see eq 14). Since the total reaction energy is
equal toAJ, the energy of transition along the coordingtis
Aj (Figure 3). Differentes values correspond to differertj.
Therefore, for a givemw the integration oveg; is equivalent to
the integration ovenj:

2
-V o (@™ keT o
kT &
N anBT (U'”)XO‘ Ceig(VvAj) .

L/“_Bo.:e. dAp(Aj) X0l e—(ui+92|z,)/kBT (25)

', %) Z,
where 7; is the value of the potentiali(x) at the transition
configurationX. Note that, according to egs 19 and 20and
6 depend om\j.

Let us transform eq 25 using eqgs 19 and 20 as follows. We
have from eq 19 that
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B v, (X)10x
9, (X)/9x — duy(X)/9x

(26)

Substitution of eq 26 into eq 20 allows deriving the enefgy
as function ofx:

vy (R)0X + duy(X)ox

N
’ Do R — du X)X

= Al + (X)) — vi(X) —

27)

Now, one can replace the integration ovgrin eq 25 by the
integration oveX using eq 2723 i.e.,

27k T (v]),01 ce o
NG Z,

where the partial activation enerdg/ is equal to

U™ )ZE 29
i@ -uw) o %

Here prime denotes the first derivative of the functiepand
vr with respect toX. The integration limits in eq 28 are
determined by the mutual disposition of the curvesnd u
(see Figure 3) since, due to eq 27, the changeleéds to the
change ofAj, i.e., to the shift of the curves relative to the
curvey; (see Appendix B). The lower limit is given by the value
of X at the crossing point of the curvesandu that coincides
with the crossing point of the level and the curveui(y). The
upper integration limit is given by such val&et that the level
7j is tangential to curvey.

The exponent(v) sharply increases artel decreases when
X varies from the lower to the upper integration limit, i.e., the
product 20 e BT has a sharp maximum within the
integration region. Other terms of the integrand in eq 28 are
smooth functions ofX. Therefore, we can approximately
calculate the integral oveg, taking the slowly changing
functions out of the integral at the point of maximum of
integrand and extending formally the integration limits from
—oo t0 0. Then using the saddle point method we obtain

E.(/ksT] (28)

0Aj ]
(T)P(Al) exp[-
1)

ER)=¢ —¢ +u(X)+

27kgT (v )i
(%, 0)
2ﬂkBT — (v, %)
W% 4

wherey" is the second derivative of the functign= ksTo(X)
+ E;(X) with respect toX, and the coordinate of the saddle
point X* is determined by equation

X

—Eav(f(*)/ ke T (30)

vV
do a
T—+———=0 31
kTx T & (31)
A more detailed numerical analysis shows that the approximate
integration overx in eq 30 gives the upper estimation of this
integral, overestimating the value of the rate constant about by

1.5-2 times. This is due to the fact that the integrand
e e F%T actually has the form of partial Gaussian curve
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TABLE 1: Parameters Used for Numerical Calculation$ TABLE 2: Coefficients of Equation ¢ = aY? + bY + ¢
item value item value (where Y = o(v) or E}) Calculated at AE = —45.5 kcal/mol
T =298 K
AEi/kcal/mol -8.5 yalA 1.395 -
AE¢/kcal/mol —54 Bi/kcal/mol 80 no. of energy level o(v) E.*
wix/cmfl 395 Bi/kcal/mol 24 v a —b c a b c
wifenT 490 Dikeal/mol 19.5 0 1851 5928 4744 464 1564 1318
y _
wiem™ i e 1 2154 6974 5645 400 1353 1146
Xoi A 116 e /kcal /mol i 2 2343 7656 6255 363 1229 1044
X - /Keal/mo 3 2739 9039 7458 347 1176 1001
4 3082 10261 8540 319 1083 924

because of the truncation of the integration interval ovés -
the left of the maximum, which is determined by the limits of *E; in keal/mol.
integration in eq 29. To take this fact into account, a constant
A is introduced into eq 30 which values range between 0.5 and
1. Finally, we represent eq 30 in the following form:

30

AE =-455 keal/mol
. e 25
W= AVe—O(%X*) e E(x) keT (32a)

=

_2nVP(dAj (" )soi
At Ry

Note that the quantithd = Al + Aj (see eq A10) that is -
involved in egs 20, 22, and 23, and other equations differs from g,

20

artial contribution into the rate constant, %

the thermodynamic reaction heAE by the difference of the o o]

energies of the zero-point vibrations of the final and initial states. 0 4+ 5 8 71 8

In our caseAE= AJ — & since the ground level in the number of vibatian level, v

continuous manifold of energies in the decaying potenkia) Figure 4. Partial contributions (%) to the rate constai of the
was accepted to be equal to zero. Therefore in the further transitions from vibration energy leveif of the O-O bond into the
discussion we substitut®d by AE and eq A10 byAl = AE + continuous manifold of energy levels of the decay potential; reaction

Aj, neglecting the small difference between these quantities forene'rgyAE = ~455 kealimol, T = 298 K.

simplicity.

a0
3. Discussion

Equations 29 and 32 represent one of the main results of the
paper. They allow us to estimate the transition probability (rate |
constant) for the dissociative adsorption of diatomic molecules & ) AZ=-555 kealfmeol
on metal surfaces with due account of quantum effects given 3 !
by the factore™. The kinetic characteristics of reactions that £
emerge from these equations in general differ from these £ 20
corresponding to the purely classical limit for the chemical bond g ]
X—X. The activation barrier in the quantum case is independent 2 g |
of the dissociation enerds; of the molecule X at a fixed value E
of the reaction healE. The effect ofB; on the rate constant
(W) is implicitly represented by eq 29 for the tunneling factor H 1 2 3 4 s & 7 8
e “. Due to this factor, the rate constant of the oxygen number of vibration level,v
dissociative adsorption is mass sensitive and a differenceFigure 5. Partial contributions (%) to the rate constam of the
between®O, and 80, might be observed. transitions from vibration energy levet of the O-O bond into the

If the molecular potentiali(y) is sufficiently steep, one may continuous manifold of energy levels of the decay potential; reaction
expect that the major contribution to the sum oven eq 32 energyAE = —55.5 kcal/mol,T = 298 K.
comes from the term with = 0, i.e., the ground vibration state  several low-lying energy levels. Using data of Tables 1 and 2
of the molecule X mainly participates in the transition that leads we calculated the contribution of the transitions from different
to the dissociative adsorption. In this limit we may ap- vibration energy levels of the ©0 bond to the rate constant
proximately restrict ourselves by one term in eq 32 with 0. W (Figure 4) for oxygen adsorption on Pd(111) characterized

This general analysis is confirmed by numerical calculations by AE = —45.5. Similar calculations were also performed for
given below. As an example, we calculate the rate con$tant  reactions characterized by a more negativE & —55.5 kcal/
using the parameters of the Morse and exponential potentialsmol) and a more positiveAE = —35.5 kcal/mol) value. These
for oxygen adsorption on Pd(111) surface. These parametersAE values were obtained by means of changing the value of
taken from ref 6 are listed in Table 1 whefds; and AE; are AE; at fixed values of other parameters excépt which
the adsorption energies for the molecular adsorbed and dissoci-depends on the value &fE.6 The results are shown in Figures5
ated states (Figure 2), aldE = AE; — AE;. The anharmonicity and 6.
constantos in eq 8 is taken to be equal to in eq 78 One can see that &fE = —55.5 kcal/mol (Figure 5) the

The results of the quadratic approximations of the partial transition along they coordinate occurs mainly by means of
activation energy and tunneling factor are given in Table 2 for tunneling from the ground and first excited vibration states of

S
!
L,
i
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transitions from different vibration energy levels to the total
AE=-35.5kealimol transition probabilityWW are calculated. The results show that
for metals characterized by larger negative reaction heats of
,,,,, dissociative adsorption and therefore by lower activation bar-
riers, the tunneling plays a lower role than that for metals with
the higher activation barriers. This should lead to a stronger
temperature dependence of the dissociative sticking probability
10 4 § 3 for the former The dependence of theWwhon the reaction heat
: s : AE obtained in quantum model is compared with that calculated
S 2 in the classical theory. It is shown that the quantum effects lead
54 3R % to a weaker dependence ofVihon AE as compared to the
classical one.
R
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continuous manifold of energy levels of the decay potential; reaction

energyAE = —35.5 kcal/mol,T = 298 K.

20

partial contribution into the rate constant, %
SRS

Appendix A

(=)
=2}
]

° Average Transition Probability at the Fixed Distancex.
In Condon approximation, this probability may be written in

2] \
- \ym:wn model the form
20

24 A

logarithm of rate constant, In W (sec’™)
®
1

P(X) =
] classical model 271
2
11 S Vil > fy der ple) expl-EMkgT] 1 F
10 ] \ V,Mg N L Zy
124 . — []@riedFoE™ — EX) (A1)
] z
104
8 T ' . : T ' . ; T whereZ, = Iy Zx is the standard vibration statistical sum for
-55 -50 -45 -40 -35
reaction heat, AZ (kealfmol) the harmonic potential, thIéy >.exp[—(Bi — €")/ksT] term
Figure 7. Comparison of the correlations between logarithm of the IS the vibrational statistical sum for the,Xnolecule,E” =
rate constant of the oxygen dissociative adsorption and the reaction Ei”k’” - (¥ = Sdodn + 12) + B — ¢, and the
energy calculated in the classical and quantum models. delta-function §) is

O, molecule ¢ = 0, 1) to the continuum of the energy levels S(E™ — EN) =
of the final exponential potential describing the repulsion of !

oxygen atoms. For a less exothermic reactiom\@gt= —35.5, — = ™ dO exp[—O(E. ™ — EMy) A2
Figure 6) a greater number of the initial vibration states take 2mikg T f—'w PE-0(E )keT] (A2)

part in the transition. The major contribution to the transition

probability comes from the energy levels with= 1, 2,0, and  is the density of states that, for free one-dimensional motion of

3. It corresponds to a greater (on average) elongation of thega particle with the masg, is
O—0 bond, i.e., to a more classical behavior.

The dependence of the quantum effects on the reaction energy (,u /2)1/2|
AE is reflected also in the Brgnsted plotsNrvs AE (Figure ple) = —an (A3)
7). This figure shows that curve 1 calculated under the h(e)

assumption of quantum motion along theoordinate and curve

2 calculated in the classical moéaliverge in the region of wherel is the length of the normalization “box”, and; is the
less negative reaction heats where the contribution of the excitedelectron resonance integrdk = [f|V|@iZ] We have after
states is of importance. substitution of eq A2 into eq Al

4. Conclusions 2

A quantum mechanical nonadiabatic theory of the dissociative P® = th z fo de p(er) f do x
adsorption of diatomic molecules,Xon metal surfaces is Vi 1

resented. An approximate expression for the rate constant is Z\—1 | gt VTR o - ENey
gerived (eqgs 40 grr:d 43) for thepmodel potentials describing the (ZV) 1Bl D]z I_l (D1 dic [uz expl E Ik
interaction of the X with a metal surface, and the interaction Mo e
of X atoms with each other. Numerical estimations are exp[-O(E™" — B*)/kT] (A4)
performed using the parameters of the oxygen dissociative
adsorption on Pd(111) surface. The relative contributions of the One can transform eq A4 into eq A5 using eqgs 11 and 12
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2

P(x) = Z L de; p(ep) f do x

(zyk)rikﬂ@ﬂxruf |:|Z:kl|m>?k*|¢. g
exp| —[Zhwk(nk + 1/2)+ B, — €)/kgT}
exp =6y hoym = § honliksT)
exp{ —0[¢ — v(X) + Adl/ks T} (A5)

Then we introduce the following notation:
§(0) = —ex

Z, ‘{ 2T nkzwexp{_ T

exp[—BIZhwm— Zhwknk]/ksmw MNP (A6)

|th

This form was used in ref 3 leading to a compact expression
for the product

[16x0) =[] expl-0(1 — O)Eu/keT] =
k k
p[ 0(1 — H)E,
exp———m
ke T

whereE; is the reorganization energy for the classic oscillatbrs.
Taking into account eqs A7 and A6, one can rewrite the
probability P(x) in the form

(A7)

= ik, T de; p(er) Z;H@?Wﬁffj; do x

exp[-6(L — 0)E./ksT) expl—(B; — )k, T]
exp[—0(e — B, + € + v(X) — v(X) + AJ)/kgT] (A8)

whereV=V;. Let us introduce the following notation

Al=¢—B+¢e +AJ (A9)

which, taking into account eq 14, may be rewritten as

Al = AJ — Aj (A10)

We can also transform the term exq{Bi — €)/keT)/Z, to the
equivalent expression exp[e? — €)/ksT]/Z,, where the sta-
tistical sumz, = 5, e T Using these notations, eq A8
takes the compact form given by eq 15.

Appendix B

Calculation of the Tunnel Factor. The tunneling factor in
eq 14 determined by the overlapping integral (eq 15) is
calculated below using the quasi-classical approximafdimne
quasi-classical wave functiong(y) and y*i(y) are defined as
follows

v_ 1 1 v
2= o]~ § fy o2uu -~ B (BY)

1

Il/2

A

1= el [ a2~ B+ e + A (B2)
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wherea and| are the normalization constanta:is of the order
of the amplitude of zero-point vibrations in the initial well, and
| corresponds to normalization of the wave function in the
potential “box”;y; andy; are the left and right crossing points
of the energy level with the corresponding potential curves
(see Figure 3).

Therefore, we rewrite the overlap integral in the form

O ()= dy

(al)ll

1 9 v
ex:{ i S 2 — B+ -

B.
f " dy[2u(u — B, + € + Aj)]Y? ~ cM2ex 2: '

1/2 1/
[roftat et
(E3)

wherec!? = dy/(al)'?2, dy is the interval ofy values giving the
major contribution to the overlap integral, ancindus are given
by egs 7 and 8. The integration limits in the integrals B3 are as
follows.

(1) The low integration limity,, is the crossing point of the
potential curvey; and the initial energy leve; — ¢. We have
the following equation:

X

U+ & + Aj
B.

B[l U-u(y YOu)] — B

(B4)
which leads to

Y1 = Yoi — (May) In[1 — /1 — €/B]

(2) The integration limi§ is the crossing point of the curves
u; andus that is determined by the equation

(BS)

Bl[l — e*ai(yfin)]z = Bfe*ZU-f(Y*in) + AJ (BG)
We find from eq B6, assuming; = o, that
1-4/1-(1-B/B)(1— Aj/B
9= Yo — (Hoy) In V1= (L= BiB)A ~ AJfB) (B7)

1-B/B,

(3) The upper limit of integration is determined by crossing
the of the final curvey (with the assumption that; = oy) and
the energy leveB; — ¢

Bf e—ZGi(y—yoi) +Aj=B

—d (88)

Yr = Yo — (1/205) In[(B, — € — Aj)/By] (B9)

Appendix C

Differentiation of eqs 5 and 6 leads to the following formulas
for the derivatives of these functions used above in eqgs for the
transition probability:

()0 = 2D (C1)
iz (X)) = 2D, Bz (1 — Z) (C2)
Vi(Z4(%) = 2D, Az (22 — 1) (C3)

where
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z(X) = exp[=Bi(x — Xy)]
and
z(X) = exp[=f(X — Xo)]
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