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A quantum mechanical nonadiabatic theory of dissociative adsorption of diatomic molecules X2 on metal
surface is presented. The following reaction coordinates are used to construct crossing diabatic potential
energy surfaces (PES): the distancey between the atoms of the X2 molecule, the distancex of the X2 molecular
axis from the surface, the set of coordinates describing possible displacements of metal atoms under adsorption.
Expression for the rate constant is derived using the model potentials describing vibrations along these
coordinates. The calculated dependency of the rate constantW on the reaction heat∆E is compared with that
in classical approximation. It is shown that quantum effects lead to a weaker dependence ofW on ∆E as
compared to that for classical one.

1. Introduction

A number of models for calculations of the rate constants
for adiabatic and nonadiabatic processes of dissociative adsorp-
tion of diatomic molecules at metals have been suggested over
the past decade. A method of effective Hamiltonian for
calculation of the activation energy was worked out in ref 1.
These authors constructed the adiabatic potential energy surfaces
(PES) for the dissociative adsorption at metal electrodes using
Schmickler’s theory2 of electrochemical reactions and consider-
ing the motion along three reactive modes. An approach for
nonadiabatic dissociative adsorption of homonuclear diatomic
molecules taking into account the structural reorganization of
the surface and the solvent effect was developed.3,4 The
coordinates that characterize the molecular vibrations of the
substrate, as well as coordinates describing the state of the
solvent in the case of catalytic reactions at the solid/liquid
interface, were introduced into the theoretical model in addition
to coordinates of adsorbate molecules. The motion along all
these coordinates was supposed to be classical. A model for
the calculation of the transition state on the adiabatic potential
energy surface for the process of the dissociative adsorption
was presented in refs 5 and 6.

The classical description of the motion along all reactive
modes, however, seems not to be always valid for the processes
under discussion. Specifically, the O-O vibration frequency
of molecular oxygen adsorbed on different metals may reach
∼1000 cm-1 for the “ontop” and “onbond” adsorption posi-
tions.6 If the dissociative adsorption of nitrogen or hydrogen is
considered, the frequency is apparently much higher than that
for oxygen. One may expect that the motion along this mode
will have a quantum character. We note that a tunneling
mechanism has gained popularity several years ago to describe
the mechanism of oxygen dissociative adsorption on silver
surfaces.7-9 Therefore, a modified model is needed where

possible quantum effects were incorporated. This is the subject
of the present paper where the process of dissociative adsorption
of a homonuclear molecule with one quantum degree of freedom
is considered in terms of nonadiabatic theory. A model and first
results are presented.

Generally speaking, there appears to be little justification for
taking the nonadiabatic approach to consider the dissociative
adsorption since this process is usually not electronically
nonadiabatic. Nonadiabatic effects for this reaction are usually
limited to electron-hole pair excitation or spin-conservation
effects which are not part of this model. Nevertheless, the
nonadiabatic approach is useful to compare quantum and
classical results. As was shown in ref 3, results for an adiabatic
case may be obtained from a nonadiabatic one by means of
correction of the activation energy using known approximate
expression.10 The correctness of this approximation was par-
ticularly confirmed in ref 5 where it was shown that the
coordinates of transition states calculated in the nonadiabatic
model may be very close to those calculated in the adiabatic
model. At last we note, that for number of dissociative reactions
(for example, for oxygen dissociative adsorption) the transition
state is close to the initial one. Because of this fact, the resonance
splitting in the transition state that depends on reaction
coordinates may be rather small.3

2. Theoretical Model

According to a generally accepted point of view,7,11 one of
the mechanisms of dissociative adsorption of an X2 molecule
on transition metals is described by a two-step process. The
first step is the nonactivated formation of the stable molecularly
adsorbed complex (precursor) between X2 and a metal surface

where a “star” denotes that the X-X bond is somewhat stretched
compared to that in a free molecule, due to a partial charge
transfer from the metal to the molecule. The second step is the
activated transition of the precursor to the atomic adsorbed
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(final) state when the X-X bond is disrupted, and the X atoms
approach the metal surface at a shorter distance

In this paper we consider only reaction II, and our goal is to
calculate the rate constant of formation of the dissociated state
(X. . .X)/metal from the precursor X2*/metal. This reaction is
obviously the rate-determining step of the above mechanism.

(a) Potential Surfaces.We assume the X2 molecule to be in
a position parallel to the metal (Figure 1).5,6 The initial,Ui, and
final, Uf, potential energy surfaces (PES) are introduced to
describe step II. Each of these potential surfaces represents the
total energy of the whole system that depends on a set of
coordinates{rk} describing the vibrations of the metal nuclei,
on the distancex between the center of mass of X2 and the
metal surface, and on the coordinatey describing the intramo-
lecular vibrations of the X2 molecule. The symbol X2 is used
here as a general notation of the reactant in the undissociated
and dissociated state.

The simplest form ofUi and Uf is that obtained under the
assumption that the vibration modes along the coordinatesx, y,
and{rk} are not coupled. In this case, both potential surfaces
may be written as a sum of three separate components. One,
V(x), characterizes the interaction between X2 and a metal surface
in the direction perpendicular to the surface. The second,u(y),
is the vibration for X2. The third term,w({rk}), is due to the
vibrations of the metal atoms. Thus, providing these components
with the subscripts “i” and “f”, we have

Here∆J is the difference of the energy values at the minima of
the potential energy surfaces of the final and initial states. The
minimum energy of the initial state is taken to be zero.

We describe now the assumed forms of the functionsV(x),
u(y) andw({rk}). The potential energieswi({rk}) andwf({rk})
are usually written in harmonic approximation since metal atoms
perform small vibrations in the crystal lattice; these potential
energies are represented as the sum of the harmonic potentials
of a set of independent oscillators

where∆rk0 ) rk0f - rk0i, ωk is the vibration frequency, andm
is the reduced mass.

The interaction potential of the adsorbate molecule with the
surface,Vi(x), includes effects of the interaction of its HOMO

with the metal electronic levels, van der Waals attraction, Pauli
repulsion, etc. According to our quantum chemical calculations
for various clusters6 it has a Morse form

The interaction potential of the dissociated system X...X with
the surface,Vf(x), characterizes the interaction of two X atoms
with the surface. The motion of two atoms along thex-axis in
the dissociated state in general should be described by two
degrees of freedom. However, in the classical limit and in view
of the symmetry of this system it is sufficient to consider only
“synchronous” shift of both atoms to or from the metal surface.
One coordinatex is sufficient then for the description of their
potential energy. The latter will be approximate also by the
Morse function6

These curves are shown in Figure 2. In eqs 5 and 6,âi andâf

are the anharmonicity constants equal to6

where M is the corresponding reduced mass,ωi,f
x is the

frequency, andDi,f is the depth of the potential well (see Figure
2).

The functionui(y) is the potential energy of nondissociated
adsorbed molecule X2. Therefore, the Morse-form approximation
seems to be appropriate

where the anharmonicity constant6

depends on the corresponding reduced massµ, the vibration
frequencyωi

y, and the dissociation energyBi (see Figure 3).
The interaction between the dissociated fragments X (in the

final state) is assumed to have a repulsive character up to long

Figure 1. Pictorial view of a diatomic molecule dissociative adsorption
on a “hole” position of a metal surface.

X2*/metal f (X. . .X)/metal (II)

Ui(x, y, {rk}) ) wi({rk}) + ui(y) + Vi(x) (1)

Uf(x, y, {rk}) ) wf({rk}) + uf(y) + Vf(x) + ∆J (2)

wi({rk}) ) 1/2∑
k

mωk
2rk

2 (3)

wf({rk}) ) 1/2∑
k

mωk
2(rk - ∆rk0)

2 (4)

Figure 2. Morse potential energy curves along thex coordinate that
illustrates molecular and dissociative adsorbed states of a X2 molecule;
x0i andx0f are the initial and the final equilibrium distances of X2 from
the surface;∆E is the reaction energy,∆Ei and ∆Ef are the corre-
sponding adsorption heats,Di andDf are the dissociative parameters
of the initial and final Morse curves.

Vi(x) ) Di[1 - e-âi(x-x0i)]2 (5)

Vf(x) ) Df[1 - e-âf(x-x0f)]2 (6)

âi,f ) xM(ωi,f
x )2/2Di,f

ui(y) ) Bi[1 - e-Ri(y-y0i)]2 (7)

Ri ) xµ(ωi
y)2/2Bi
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distances and is described by the exponential function

where∆j characterizes the position of the curveuf relative to
the y axis as shown in Figure 3.

(b) Transition Probability. According to the aforesaid, we
need to calculate the rate constant of step II, i.e., the average
transition probability per unit time from the potential surface
Ui to the potential surfaceUf. The most appropriate method for
nonadiabatic reactions (which is rigorous at small interaction
V between the reactants) is the Fermi Golden Rule.10,12,13Let
us introduce the wave functions of the initial and final states
using the Born-Oppenheimer approximation12

Hereæi,f are the electronic wave functions andR is the electronic
coordinate,øi,f are the nuclear wave functions describing a
relative motion of X atoms along the quantum degree of freedom
y. The functionøi

ν is characterized by the quantum vibration
numberν, and the functionøf

εf corresponds to the energy level
εf in a continuous manifold of energies of the final decaying
potential uf(y). The φf

nk(rk) and φf
mk(rk) terms are the wave

functions of the phonon subsystem in the initial vibration state
nk and the final vibration statemk, respectively. The total
energies of the whole system including the energiesVi,f (x) of
the classical subsystem are equal to

The energy levelsεi
ν in the Morse potential well (eq 7) are

given by equation12

Note that energy levelsεi
ν start from the energyui(y) at

infinity, i.e., from the energy value equal toBi (see Figure 3).
Therefore, the energy distance of the levelεi

ν from y-axis in
Figure 3 is equal toBi - εi

ν. The energy levelsεf start from the
value of theuf(y) at infinity. Since according to eq 8uf(∞) )
∆j, we can see from Figure 3 that under the conditions of the
Franck-Condon principle for the quantum subsystem12

where∆j < 0 if the value ofuf(∞) is negative, and∆j > 0 if
uf(∞) > 0.

First, we calculate the average probability of the transition
(per unit time) from the initial state to the final state at the fixed
distancex. In Condon approximation it may be presented in
the following form (see Appendix A):

where the notation

of the square of the overlap integral of the wave functions for
the quantum degree of freedom was introduced, and∆I is given
by eq A10. The constantc in eqs 15 and 16 is due to the
normalization of the wave functionsøi,f(y) (for details see
Appendix B). Equation 15 determines the probability of the
transition at fixed value of the coordinatex. The total transition
probability W is obtained by the weighted integration ofP(x)
over x

whereZx is the configurational integral.
The integrals overx andθ can be calculated approximately

using the saddle point method.10,13The calculation leads to the
following equation for the transition probability:

Figure 3. Morse/exponential potentials along they coordinate describ-
ing the molecular adsorbed and dissociated states;Bi is the dissociation
parameter of the potential curveui; ∆j is the energy of transition along
the coordinatey.

uf(y) ) Bfe
-2Rf(y-y0i) + ∆j (8)

Ψi
ν,nk ) æi(R; y, {rk})øi

ν(y)∏
k

φi
nk(rk) (9)

Ψf
εf,mk ) æf(R; y, {rk})øf

εf(y)∏
k

φf
mk(rk) (10)

Ei
nk,ν ) ∑

k

pωk(nk + 1/2) + Bi - εi
ν + Vi(x) (11)

Ei
mk,εf ) ∑

k

pωk(mk + 1/2) + εf + νf(x) + ∆J (12)

εi
ν ) Bi[1 -

Rip

x2µBi

(ν + 1/2)]2

(13)

εf ) Bi - εi
ν - ∆j (14)

P(x) )
V2

ipkBT
×

∑
ν)0

exp[-(εi
0 - εi

ν)/kBT]∫0

∞
dεfF(εf)

c exp[-σ(ν, εf)]

Zy

×

∫-i∞

i∞
dθ exp[-{θ∆I + θ(1 - θ)Er + θ[νf(x) - νi(x)]}/kBT]

(15)

|〈øf
εf(y)|øi

ν(y)〉|2 t ce-σ(ν,εf) (16)

W ) 1
Zx

∫0

∞
e-[Vi(x)/kBT]P(x) dx

) ∫0

∞
dx

V2

ipkBT
∑

ν

exp[-(εi
0 - εi

ν)/kBT] ∫0

∞
dεfF(εf) ×

c exp[-σ(ν, εf)]

Zy

×

∫-i∞

i∞
dθ exp[-{θ∆I + θ(1 - θ)Er}/kBT] ×

1

Zx

∫0

∞
dx exp[-{θνf(x) + (1 - θ)νi(x)}/kBT] (17)
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wherex̂ andθ̂ are the coordinates of the saddle point determined
by the equations

In eq 18,f ′′(x̂) ) (∂2f/∂x2)x̂ is the partial second derivative of
the function

with respect tox, H′′(x̂, θ̂) ) (d2H/dθ2)θ̂ is the total second
derivative of the function

with respect toθ, andV′′i (x)x0i is the second derivative of the
function Vi(x) with respect tox. The productf ′′(x̂, θ)‚|H′′(θ̂,
x̂)| may be represented in the following form suitable for the
numerical calculation13

(for determination of the derivatives see Appendix C). A more
compact form forH(x, θ) emerges with the use of eq 20:

Equations 18-20 may be used for numerical calculations;
however, since the calculation of the matrix element (eq 16) is
rather difficult, we transform eq 18 into a more convenient form
for the application of a quasi-classical approximation.12 The
physical meaning of eq 18 is the following. The transition
between two energy levelsεi

ν and εf corresponds to the
transition along the classical coordinatesx and {rk} with the
effective energy of transition equal to∆I ) ∆J - ∆j where∆j
) Bi - εi

ν - εf (see eq 14). Since the total reaction energy is
equal to∆J, the energy of transition along the coordinatey is
∆j (Figure 3). Differentεf values correspond to different∆j.
Therefore, for a givenν the integration overεf is equivalent to
the integration over∆j:

where V̂i is the value of the potentialVi(x) at the transition
configurationx̂. Note that, according to eqs 19 and 20,V̂i and
θ̂ depend on∆j.

Let us transform eq 25 using eqs 19 and 20 as follows. We
have from eq 19 that

Substitution of eq 26 into eq 20 allows deriving the energy∆j
as function ofx̂:

Now, one can replace the integration over∆j in eq 25 by the
integration overx̂ using eq 27,13 i.e.,

where the partial activation energyEa
ν is equal to

Here prime denotes the first derivative of the functionsVi and
Vf with respect tox̂. The integration limits in eq 28 are
determined by the mutual disposition of the curvesui and uf

(see Figure 3) since, due to eq 27, the change ofx̂ leads to the
change of∆j, i.e., to the shift of the curveuf relative to the
curveui (see Appendix B). The lower limit is given by the value
of x̂ at the crossing point of the curvesui anduf that coincides
with the crossing point of the levelν and the curveui(y). The
upper integration limit is given by such valuex̂ at that the level
V̂i is tangential to curveuf.

The exponentσ(ν) sharply increases andEa
ν decreases when

x̂ varies from the lower to the upper integration limit, i.e., the
product e-σ(ν) e-Eaν/kBT has a sharp maximum within the
integration region. Other terms of the integrand in eq 28 are
smooth functions ofx̂. Therefore, we can approximately
calculate the integral overx̂, taking the slowly changing
functions out of the integral at the point of maximum of
integrand and extending formally the integration limits from
-∞ to ∞. Then using the saddle point method we obtain

whereψ′′ is the second derivative of the functionψ ) kBTσ(x̂)
+ Ea

ν(x̂) with respect tox̂, and the coordinate of the saddle
point x̂* is determined by equation

A more detailed numerical analysis shows that the approximate
integration overx in eq 30 gives the upper estimation of this
integral, overestimating the value of the rate constant about by
1.5-2 times. This is due to the fact that the integrand
e-σ(ν)e-Ea

ν/kBT actually has the form of partial Gaussian curve

W )
V2

pkBT
∑

ν

e-(εi
0-εi

ν)/kBT ∫0

∞
dεf F(εf) ×

x 2πkBT(ν′′i )x0i

|H′′(θ̂, x̂)|f ′′(θ̂, x̂)

c exp[-σ(ν,εf)]

Zy

exp[-H(θ̂,x̂)/kBT]

(18)

(1 - θ)
dVi(x)

dx
+ θ

dVf(x)

dx
) 0 (19)

∆I + Vf(x̂) - Vi(x̂) + (1 - 2θ)Er ) 0 (20)

f(x) ) θνf(x) + (1 - θ)νi(x) (21)

H(θ, x) ) θ(∆I - ∆j) + f(x) + θ(1 - θ)Er (22)

Γ(x̂, θ̂) ) f ′′(x̂, θ̂)|H′′(θ̂, x̂)| ) [∆I - ∆j + Er + Vf(x) -

Vi(x̂)][(V′′f (x̂) - V′′i (x̂)] + 2V′′i(x̂)Er + [V′i(x̂) - V′f(x̂)]2 (23)

H(x, θ) ) Vi(x) + θ2Er (24)

W )
V2

pkBT
∑

ν

e-(εi
0-εi

ν)/kBT ×

∫-∞
Bi-εi

ν

d∆F(∆j) x2πkBT (V′′i )x0i

Γ(θ̂, x̂)

ce-σ(ν,∆j)

Zy

e-(V̂i+θ̂2Er)/kBT (25)

θ )
∂Vi(x)/∂x

∂Vi(x)/∂x - ∂Vf(x)/∂x
(26)

∆j ) ∆I + Vf(x̂) - Vi(x̂) - Er

∂Vi(x̂)/∂x + ∂Vf(x̂)/∂x

∂Vi(x̂)/∂x - ∂Vf(x̂)/∂x
(27)

W )
V2

pkBT
∑

ν
∫ dx̂ ×

(∂∆j

∂x̂ )F(∆j)x2πkBT (V′′i )x0i

Γ(θ̂, x̂)

ce-σ(ν,x̂)

Zy

exp[-Ea
ν(x̂)/kBT] (28)

Ea
ν(x̂) ) εi

0 - εi
ν + Vi(x̂) + ( V′i(x̂)

V′i(x̂) - V′f(x̂))2

Er (29)

W )
V2

pkBT
∑

ν

cF(x̂*)(d∆j

dx̂ )
x̂*x2πkBT (V′′i )x0i

Γ(x̂* , θ̂)
×

x2πkBT

(ψ′′)x̂*

e-σ(ν,x̂*)

Zy

e-Ea
ν(x̂*)/kBT (30)

kBT
dσ
dx̂

+
dEa

ν

dx̂
) 0 (31)
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because of the truncation of the integration interval overx̂ to
the left of the maximum, which is determined by the limits of
integration in eq 29. To take this fact into account, a constant
Λ is introduced into eq 30 which values range between 0.5 and
1. Finally, we represent eq 30 in the following form:

Note that the quantity∆J ) ∆I + ∆j (see eq A10) that is
involved in eqs 20, 22, and 23, and other equations differs from
the thermodynamic reaction heat∆E by the difference of the
energies of the zero-point vibrations of the final and initial states.
In our case∆E) ∆J - εi

0 since the ground level in the
continuous manifold of energies in the decaying potentialuf(y)
was accepted to be equal to zero. Therefore in the further
discussion we substitute∆J by ∆E and eq A10 by∆I ) ∆E +
∆j, neglecting the small difference between these quantities for
simplicity.

3. Discussion

Equations 29 and 32 represent one of the main results of the
paper. They allow us to estimate the transition probability (rate
constant) for the dissociative adsorption of diatomic molecules
on metal surfaces with due account of quantum effects given
by the factore-σ. The kinetic characteristics of reactions that
emerge from these equations in general differ from these
corresponding to the purely classical limit for the chemical bond
X-X. The activation barrier in the quantum case is independent
of the dissociation energyBi of the molecule X2 at a fixed value
of the reaction heat∆E. The effect ofBi on the rate constant
(W) is implicitly represented by eq 29 for the tunneling factor
e-σ. Due to this factor, the rate constant of the oxygen
dissociative adsorption is mass sensitive and a difference
between16O2 and18O2 might be observed.

If the molecular potentialui(y) is sufficiently steep, one may
expect that the major contribution to the sum overν in eq 32
comes from the term withν ) 0, i.e., the ground vibration state
of the molecule X2 mainly participates in the transition that leads
to the dissociative adsorption. In this limit we may ap-
proximately restrict ourselves by one term in eq 32 withν ) 0.

This general analysis is confirmed by numerical calculations
given below. As an example, we calculate the rate constantW
using the parameters of the Morse and exponential potentials
for oxygen adsorption on Pd(111) surface. These parameters
taken from ref 6 are listed in Table 1 where∆Ei and∆Ef are
the adsorption energies for the molecular adsorbed and dissoci-
ated states (Figure 2), and∆E ) ∆Ef - ∆Ei. The anharmonicity
constantRf in eq 8 is taken to be equal toRi in eq 7.6

The results of the quadratic approximations of the partial
activation energy and tunneling factor are given in Table 2 for

several low-lying energy levels. Using data of Tables 1 and 2
we calculated the contribution of the transitions from different
vibration energy levels of the O-O bond to the rate constant
W (Figure 4) for oxygen adsorption on Pd(111) characterized
by ∆E ) -45.5. Similar calculations were also performed for
reactions characterized by a more negative (∆E ) -55.5 kcal/
mol) and a more positive (∆E ) -35.5 kcal/mol) value. These
∆E values were obtained by means of changing the value of
∆Ef at fixed values of other parameters exceptDf, which
depends on the value of∆E.6 The results are shown in Figures5
and 6.

One can see that at∆E ) -55.5 kcal/mol (Figure 5) the
transition along they coordinate occurs mainly by means of
tunneling from the ground and first excited vibration states of

TABLE 1: Parameters Used for Numerical Calculations6

item value item value

∆Ei/kcal/mol -8.5 y0i/Å 1.395
∆Ef/kcal/mol -54 Bi/kcal/mol 80
ωi

x/cm-1 395 Bf/kcal/mol 24
ωf

x/cm-1 490 Di/kcal/mol 19.5
ωi

y/cm-1 850 Df/kcal/mol 174
x0i/Å 1.70 V/kcal/mol 0.6
x0f/Å 1.16 Er/kcal/mol 4

W ) ∑
ν)0

Aνe
-σ(ν,x̂*) e-Ea

ν(x̂*)/kBT (32a)

Aν ) Λ2πV2

pZy
cFν(d∆j

dx̂ )x̂*x (V′′i )x0i

Γ(x̂*, θ̂) ψ′′x̂*

(32b)

TABLE 2: Coefficients of Equation æ ) aY2 + bY + c
(where Y ) σ(ν) or Ea

ν) Calculated at ∆E ) -45.5 kcal/mol;
T ) 298 K

no. of energy level σ(ν) Ea
ν a

ν a -b c a -b c

0 1851 5928 4744 464 1564 1318
1 2154 6974 5645 400 1353 1146
2 2343 7656 6255 363 1229 1044
3 2739 9039 7458 347 1176 1001
4 3082 10261 8540 319 1083 924

a Ea
ν in kcal/mol.

Figure 4. Partial contributions (%) to the rate constantW of the
transitions from vibration energy levelsεi

ν of the O-O bond into the
continuous manifold of energy levels of the decay potential; reaction
energy∆E ) -45.5 kcal/mol,T ) 298 K.

Figure 5. Partial contributions (%) to the rate constantW of the
transitions from vibration energy levelsεi

ν of the O-O bond into the
continuous manifold of energy levels of the decay potential; reaction
energy∆E ) -55.5 kcal/mol,T ) 298 K.
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O2 molecule (ν ) 0, 1) to the continuum of the energy levels
of the final exponential potential describing the repulsion of
oxygen atoms. For a less exothermic reaction (at∆E ) -35.5,
Figure 6) a greater number of the initial vibration states take
part in the transition. The major contribution to the transition
probability comes from the energy levels withν ) 1, 2, 0, and
3. It corresponds to a greater (on average) elongation of the
O-O bond, i.e., to a more classical behavior.

The dependence of the quantum effects on the reaction energy
∆E is reflected also in the Brønsted plots lnW vs ∆E (Figure
7). This figure shows that curve 1 calculated under the
assumption of quantum motion along they coordinate and curve
2 calculated in the classical model3 diverge in the region of
less negative reaction heats where the contribution of the excited
states is of importance.

4. Conclusions

A quantum mechanical nonadiabatic theory of the dissociative
adsorption of diatomic molecules X2 on metal surfaces is
presented. An approximate expression for the rate constant is
derived (eqs 40 and 43) for the model potentials describing the
interaction of the X2 with a metal surface, and the interaction
of X atoms with each other. Numerical estimations are
performed using the parameters of the oxygen dissociative
adsorption on Pd(111) surface. The relative contributions of the

transitions from different vibration energy levels to the total
transition probabilityW are calculated. The results show that
for metals characterized by larger negative reaction heats of
dissociative adsorption and therefore by lower activation bar-
riers, the tunneling plays a lower role than that for metals with
the higher activation barriers. This should lead to a stronger
temperature dependence of the dissociative sticking probability
for the former. The dependence of the lnW on the reaction heat
∆E obtained in quantum model is compared with that calculated
in the classical theory. It is shown that the quantum effects lead
to a weaker dependence of lnW on ∆E as compared to the
classical one.
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Appendix A

Average Transition Probability at the Fixed Distancex.
In Condon approximation, this probability may be written in
the form

whereZr ) ΠkZrk is the standard vibration statistical sum for
the harmonic potential, theZ̃y ) ∑νexp[-(Bi - εi

ν)/kBT] term
is the vibrational statistical sum for the X2 molecule,Ẽ i

nk,ν )
E i

nk,ν - Vi(x) ) ∑kpωk(nk + 1/2) + Bi - εi
ν, and the

delta-function (δ) is

is the density of states that, for free one-dimensional motion of
a particle with the massµ, is

wherel is the length of the normalization “box”, andVfi is the
electron resonance integralVfi ) 〈æf|V|æi〉. We have after
substitution of eq A2 into eq A1

One can transform eq A4 into eq A5 using eqs 11 and 12

Figure 6. Partial contributions (%) to the rate constantW of the
transitions from vibration energy levelsεi

ν of the O-O bond into the
continuous manifold of energy levels of the decay potential; reaction
energy∆E ) -35.5 kcal/mol,T ) 298 K.

Figure 7. Comparison of the correlations between logarithm of the
rate constant of the oxygen dissociative adsorption and the reaction
energy calculated in the classical and quantum models.

P(x) )
2π

p
|Vfi|2 ∑

ν,mk,nk

∫0

∞
dεf F(εf) exp[-Ẽi

nk,ν/kBT]
1

Zy

|〈øf
εf|øi

ν〉|2 ×

1

Zr
∏

k

|〈φfk
mk|φik

nk〉|2δ(Ef
mk,εf - Ei

nk,ν) (A1)

δ(Ef
mk,εf - Ei

nk,ν) )
1

2πikBT∫-i∞

i∞
dθ exp[-θ(Ef

mk,εf - Ei
nk,ν)/kBT] (A2)

F(εf) )
(µ/2)1/2l

πp(εf)
1/2

(A3)

P(x) )
Vfi

2

ipkBT
∑

ν,nk,mk

∫0

∞
dεf F(εf) ∫-i∞

i∞
dθ ×

(Z̃y)
-1 |〈øf

εf|øi
ν〉|2 1

Zr
∏

k

|〈φfk
mk|φik

nk〉|2 exp[-Ẽi
nk,ν/kBT]

exp[-θ(Ef
mk,εf - Ei

nk,ν)/kBT] (A4)
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Then we introduce the following notation:

This form was used in ref 3 leading to a compact expression
for the product

whereEr is the reorganization energy for the classic oscillators.10

Taking into account eqs A7 and A6, one can rewrite the
probability P(x) in the form

whereV≡Vfi . Let us introduce the following notation

which, taking into account eq 14, may be rewritten as

We can also transform the term exp[-(Bi - εi
ν)/kBT]/Z̃y to the

equivalent expression exp[-(εi
0 - εi

ν)/kBT]/Zy, where the sta-
tistical sumZy ) ∑ν e-(εi

0-εi
ν)/kBT. Using these notations, eq A8

takes the compact form given by eq 15.

Appendix B

Calculation of the Tunnel Factor. The tunneling factor in
eq 14 determined by the overlapping integral (eq 15) is
calculated below using the quasi-classical approximation.12 The
quasi-classical wave functionsøi

ν(y) andøf
∆j(y) are defined as

follows

wherea andl are the normalization constants:a is of the order
of the amplitude of zero-point vibrations in the initial well, and
l corresponds to normalization of the wave function in the
potential “box”; yl andyr are the left and right crossing points
of the energy levelν with the corresponding potential curves
(see Figure 3).

Therefore, we rewrite the overlap integral in the form

wherec1/2 ) δy/(al)1/2, δy is the interval ofy values giving the
major contribution to the overlap integral, andui anduf are given
by eqs 7 and 8. The integration limits in the integrals B3 are as
follows.

(1) The low integration limit,yl, is the crossing point of the
potential curveui and the initial energy levelBi - εi

ν. We have
the following equation:

which leads to

(2) The integration limitŷ is the crossing point of the curves
ui anduf that is determined by the equation

We find from eq B6, assumingRi ) Rf, that

(3) The upper limit of integration is determined by crossing
the of the final curveuf (with the assumption thatRi ) Rf) and
the energy levelBi - εi

ν:

Appendix C

Differentiation of eqs 5 and 6 leads to the following formulas
for the derivatives of these functions used above in eqs for the
transition probability:

where

P(x) )
Vfi

2

ipkBT
∑

ν,nk,mk

∫0

∞
dεf F(εf) ∫-i∞

i∞
dθ ×

(Z̃y)
-1|〈øf

εf|øi
ν〉|2 ∏

k

Zrk
-1|〈φfk

mk|φik
nk〉|2

exp{-[∑
k

pωk(nk + 1/2) + Bi - εi
ν]/kBT}

exp{-θ[∑
k

pωkmk - ∑
k

pωknk]/kBT}

exp{-θ[εf - Bi + εi
ν + Vf(x) - Vi(x) + ∆J]/kBT} (A5)

êk(θ) )
1

Zrk

exp[-
pωk

2kBT]∑
nk,mk

exp[-
pωknk

kBT ]
exp{-θ[∑

k

pωkmk - ∑
k

pωknk]/kBT}|〈φfk
mk|φik

nk〉|2 (A6)

∏
k

êk(θ) ) ∏
k

exp[-θ(1 - θ)Erk/kBT] )

exp[-
θ(1 - θ)Er

kBT ] (A7)

P(x) )
V2

ipkBT
∑

ν
∫0

∞
dεf F(εf) Z̃y

-1|〈øf
εf|øi

ν〉|2∫-i∞

i∞
dθ ×

exp[-θ(1 - θ)Er/kBT] exp[-(Bi - εi
ν)/kBT]

exp[-θ(εf - Bi + εi
ν + Vf(x) - Vi(x) + ∆J)/kBT] (A8)

∆I ) εf - Bi + εi
ν + ∆J (A9)

∆I ) ∆J - ∆j (A10)

øi
ν ) 1

a1/2
exp[- 1

p
∫yl

ŷ
dy[2µ(ui - Bi + εi

ν)]1/2 (B1)

øf
∆j ) 1

l1/2
exp[- 1

p
∫ŷ

yr dy[2µ(uf - Bi + εi
ν + ∆j)]1/2 (B2)
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×

∫y
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ν
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- 1]1/2

+ ∫ŷ

yr dy[uf + εi
ν + ∆j
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(B3)

Bi[1 - e-Ri(y-y0i)]2 ) Bi - εi
ν (B4)

yl ) y0i - (1/Ri) ln[1 - x1 - εi
ν/Bi] (B5)

Bi[1 - e-Ri(y-y0i)]2 ) Bfe
-2Rf(y-y0i) + ∆j (B6)

ŷ ) y0i - (1/Ri) ln
1 - x1 - (1 - Bf/Bi)(1 - ∆j/Bi)

1 - Bf/Bi
(B7)

Bf e-2Ri(y-y0i) + ∆j ) Bi - εi
ν (B8)

yr ) y0i - (1/2Ri) ln[(Bi - εi
ν - ∆j)/Bf] (B9)

(V′′i )x0i ) 2Diâ
2 (C1)

V′i,f(zi,f(x)) ) 2Di,fâi,fzi,f(1 - zi,f) (C2)

V′′i,f(zi,f(x)) ) 2Di,fâi,f
2 zi,f(2zi,f - 1) (C3)
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and
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